## AI-Ni-Zr (Aluminum-Nickel-Zirconium)

V. Raghavan

The review of [1991Nas] gave a partial liquidus projection for Ni-rich alloys and isothermal sections at 1100, 1000, and 800 °C. A number of ternary compounds have been reported, see [1991Nas] for a listing. Recently, the solidification features of Ni-rich alloys of this ternary system were characterized by [1999Miu] and [2001Miu].

## **Binary Systems**

The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl<sub>3</sub> ( $D0_{11}$ , Fe<sub>3</sub>C-type orthorhombic), Ni<sub>2</sub>Al<sub>3</sub> ( $D5_3$ -type hexagonal), NiAl (B2, CsCl-type cubic), Ni<sub>5</sub>Al<sub>3</sub> (Ga<sub>3</sub>Pt<sub>5</sub>-type orthorhombic), and Ni<sub>3</sub>Al ( $L1_2$ , AuCu<sub>3</sub>-type cubic, denoted  $\gamma'$ ). The Al-Zr phase diagram [Massalski2] depicts ten intermediate phases: Al<sub>3</sub>Zr, Al<sub>2</sub>Zr, Al<sub>3</sub>Zr<sub>2</sub>, AlZr, Al<sub>4</sub>Zr<sub>5</sub>, Al<sub>3</sub>Zr<sub>4</sub>, Al<sub>2</sub>Zr<sub>3</sub>, Al<sub>3</sub>Zr<sub>5</sub>, AlZr<sub>2</sub>, and AlZr<sub>3</sub>. The Ni-Zr phase diagram [Massalski2] has a number of intermediate compounds: Ni<sub>5</sub>Zr, Ni<sub>7</sub>Zr<sub>2</sub>, Ni<sub>3</sub>Zr, Ni<sub>21</sub>Zr<sub>8</sub>, Ni<sub>10</sub>Zr<sub>7</sub>, Ni<sub>11</sub>Zr<sub>9</sub>, NiZr, and NiZr<sub>2</sub>. For crystal structure data on the Al-Zr and Ni-Zr compounds, see [Pearson3].

## **Liquidus Projection**

With starting metals of 99.99 wt.% Al, 99.95 wt.% Ni, and 99.6 wt.% Zr, [2001Miu] arc melted six Al-Ni binary alloys and three ternary alloys with Zr and Al contents up to 13 and 20 at.%, respectively. The phase equilibria were studied with differential thermal analysis at a heating/ cooling rate of 5 to 10 °C/min, wavelength dispersive spectroscopy, and x-ray diffraction. By combining their results with the earlier study of [1999Miu], [2001Miu] constructed a partial liquidus projection shown in Fig. 1. A temperature maximum C was observed on the univariant line L + Ni<sub>5</sub>Zr + (Ni). The final solidification at the Ni end is through the ternary eutectic reaction E: L  $\leftrightarrow$  (Ni) + Ni<sub>5</sub>Zr + Ni<sub>3</sub>Al. Constant temperature contour lines are shown in the (Ni) primary region [2001Miu].



Fig. 1 Al-Ni-Zr partial liquidus projection for Ni-rich alloys [2001Miu]

## References

- **1991Nas:** P. Nash and Y.Y. Pan, The Al-Ni-Zr (Aluminum-Nickel-Zirconium) System, *J. Phase Equilibria*, 1991, **12**(1), p 105-113
- 1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilibria, 1993, 14(2), p 257-259
- **1999Miu:** S. Miura, Y.M. Hong, T. Suzuki, and Y. Mishima, Liquidus and Solidus Temperatures of Ni-Solid Solution in Ni-Al-*X* (*X*: Ti, Zr, and Hf) Ternary Systems, *J. Phase Equilibria*, 1999, **20**(3), p 193-198
- 2001Miu: S. Miura, H. Unno, T. Yamazaki, S. Takizawa, and T. Mohri, Reinvestigation of Ni-Solid Solution/Liquid Equilibria in Ni-Al Binary and Ni-Al-Zr Ternary Systems, J. Phase Equilibria, 2001, 22(4), p 457-462